How to convert a stream's serialization format

Problem:

you have a Kafka topic with the data serialized in a particular format, and you want to change the format to something else.

Edit this page

Example use case:

Consider a topic with events that represent movie releases. The events in the topic are formatted with JSON. In this tutorial, we'll write a program that creates a new topic with the same events, but formatted with Avro.

Code example:

Try it

1
Initialize the project

To get started, make a new directory anywhere you’d like for this project:

mkdir ksql-serialization && cd ksql-serialization

Then make the following directories to set up its structure:

mkdir src test

2
Get Confluent Platform

Next, create the following docker-compose.yml file to obtain Confluent Platform:

---
version: '2'

services:
  zookeeper:
    image: confluentinc/cp-zookeeper:5.3.0
    hostname: zookeeper
    container_name: zookeeper
    ports:
      - "2181:2181"
    environment:
      ZOOKEEPER_CLIENT_PORT: 2181
      ZOOKEEPER_TICK_TIME: 2000

  broker:
    image: confluentinc/cp-enterprise-kafka:5.3.0
    hostname: broker
    container_name: broker
    depends_on:
      - zookeeper
    ports:
      - "29092:29092"
    environment:
      KAFKA_BROKER_ID: 1
      KAFKA_ZOOKEEPER_CONNECT: 'zookeeper:2181'
      KAFKA_LISTENER_SECURITY_PROTOCOL_MAP: PLAINTEXT:PLAINTEXT,PLAINTEXT_HOST:PLAINTEXT
      KAFKA_ADVERTISED_LISTENERS: PLAINTEXT://broker:9092,PLAINTEXT_HOST://localhost:29092
      KAFKA_METRIC_REPORTERS: io.confluent.metrics.reporter.ConfluentMetricsReporter
      KAFKA_OFFSETS_TOPIC_REPLICATION_FACTOR: 1
      KAFKA_GROUP_INITIAL_REBALANCE_DELAY_MS: 0
      CONFLUENT_METRICS_REPORTER_BOOTSTRAP_SERVERS: broker:9092
      CONFLUENT_METRICS_REPORTER_ZOOKEEPER_CONNECT: zookeeper:2181
      CONFLUENT_METRICS_REPORTER_TOPIC_REPLICAS: 1
      CONFLUENT_METRICS_ENABLE: 'true'
      CONFLUENT_SUPPORT_CUSTOMER_ID: 'anonymous'

  schema-registry:
    image: confluentinc/cp-schema-registry:5.3.0
    hostname: schema-registry
    container_name: schema-registry
    depends_on:
      - zookeeper
      - broker
    ports:
      - "8081:8081"
    environment:
      SCHEMA_REGISTRY_HOST_NAME: schema-registry
      SCHEMA_REGISTRY_KAFKASTORE_CONNECTION_URL: 'zookeeper:2181'

  ksql-server:
    image: confluentinc/cp-ksql-server:5.3.0
    hostname: ksql-server
    container_name: ksql-server
    depends_on:
      - broker
      - schema-registry
    ports:
      - "8088:8088"
    environment:
      KSQL_CONFIG_DIR: "/etc/ksql"
      KSQL_LOG4J_OPTS: "-Dlog4j.configuration=file:/etc/ksql/log4j-rolling.properties"
      KSQL_BOOTSTRAP_SERVERS: "broker:9092"
      KSQL_HOST_NAME: ksql-server
      KSQL_LISTENERS: "http://0.0.0.0:8088"
      KSQL_CACHE_MAX_BYTES_BUFFERING: 0
      KSQL_KSQL_SCHEMA_REGISTRY_URL: "http://schema-registry:8081"
      KSQL_PRODUCER_INTERCEPTOR_CLASSES: "io.confluent.monitoring.clients.interceptor.MonitoringProducerInterceptor"
      KSQL_CONSUMER_INTERCEPTOR_CLASSES: "io.confluent.monitoring.clients.interceptor.MonitoringConsumerInterceptor"

  ksql-cli:
    image: confluentinc/cp-ksql-cli:5.3.0
    container_name: ksql-cli
    depends_on:
      - broker
      - ksql-server
    entrypoint: /bin/sh
    tty: true
    volumes:
      - ./src:/opt/app/src
      - ./test:/opt/app/test

And launch it by running:

docker-compose up

3
Write the program interactively using the CLI

To begin developing interactively, open up the KSQL CLI:

docker exec -it ksql-cli ksql http://ksql-server:8088

The first thing we’ll need is to create a Kafka topic and stream to represent the movie data. We declare the VALUE_FORMAT of the stream to be json to denote the format of the events.

CREATE STREAM movies_json (movie_id BIGINT, title VARCHAR, release_year INT)
    WITH (KAFKA_TOPIC='json-movies',
          PARTITIONS=1,
          VALUE_FORMAT='json');

Then produce the following events to the stream. This will automatically format the data that goes onto the topic in JSON since the stream’s value format is declared as such.

INSERT INTO movies_json (movie_id, title, release_year) VALUES (1, 'Lethal Weapon', 1992);
INSERT INTO movies_json (movie_id, title, release_year) VALUES (2, 'Die Hard', 1988);
INSERT INTO movies_json (movie_id, title, release_year) VALUES (3, 'Predator', 1997);

Now that you have a stream of JSON events, let’s convert them to Avro. Set the following properties to ensure that you’re reading from the beginning of the stream:

SET 'auto.offset.reset' = 'earliest';

To convert the events to Avro, we’re going to create a derived stream. All that is needed is to specify the VALUE_FORMAT as avro, and the conversion will happen automatically. You can also optionally specify the topic name as we’ve done here. Omitting this parameter will cause the underlying topic to be named the same as the stream name.

CREATE STREAM movies_avro
    WITH (KAFKA_TOPIC='avro-movies', VALUE_FORMAT='avro') AS
    SELECT * FROM movies_json;

Because this is a continuous query, any new records arriving on the source in JSON (json-movies) will be automatically converted to Avro on the derived topic (avro-movies).

To check that it’s working, print out the contents of the output stream’s underlying topic:

PRINT 'avro-movies' FROM BEGINNING LIMIT 3;

This should yield the following output:

Format:AVRO
8/1/19 3:28:06 PM UTC, null, {"MOVIE_ID": 1, "TITLE": "Lethal Weapon", "RELEASE_YEAR": 1992}
8/1/19 3:28:06 PM UTC, null, {"MOVIE_ID": 2, "TITLE": "Die Hard", "RELEASE_YEAR": 1988}
8/1/19 3:28:06 PM UTC, null, {"MOVIE_ID": 3, "TITLE": "Predator", "RELEASE_YEAR": 1997}

Congrats! You’ve taken a topic formatted with JSON and created a continuously updating copy on a new topic in Avro.

4
Write your statements to a file

Now that you have a series of statements that’s doing the right thing, the last step is to put them into a file so that they can be used outside the CLI session. Create a file at src/statements.sql with the following content:

CREATE STREAM movies_json (movie_id BIGINT, title VARCHAR, release_year INT)
    WITH (KAFKA_TOPIC='json-movies',
          PARTITIONS=1,
          VALUE_FORMAT='json');

CREATE STREAM movies_avro
    WITH (KAFKA_TOPIC='avro-movies', VALUE_FORMAT='avro') AS
    SELECT * FROM movies_json;

Test it

1
Create the test data

Create a file at test/input.json with the inputs for testing:

{
  "inputs": [
    {
      "topic": "json-movies",
      "key": null,
      "value": {
        "TITLE": "Lethal Weapon",
        "movie_id": "1",
        "release_year": 1992
      }
    },
    {
      "topic": "json-movies",
      "key": null,
      "value": {
        "TITLE": "Die Hard",
        "movie_id": "2",
        "release_year": 1988
      }
    },
    {
      "topic": "json-movies",
      "key": null,
      "value": {
        "TITLE": "Predator",
        "movie_id": "3",
        "release_year": 1997
      }
    }
  ]
}

Similarly, create a file at test/output.json with the expected outputs:

{
  "outputs": [
    {
      "topic": "avro-movies",
      "key": null,
      "value": {
        "TITLE": "Lethal Weapon",
        "movie_id": 1,
        "release_year": 1992
      }
    },
    {
      "topic": "avro-movies",
      "key": null,
      "value": {
        "TITLE": "Die Hard",
        "movie_id": 2,
        "release_year": 1988
      }
    },
    {
      "topic": "avro-movies",
      "key": null,
      "value": {
        "TITLE": "Predator",
        "movie_id": 3,
        "release_year": 1997
      }
    }
  ]
}

2
Invoke the tests

Lastly, invoke the tests using the test runner and the statements file that you created earlier:

docker exec ksql-cli ksql-test-runner -i /opt/app/test/input.json -s /opt/app/src/statements.sql -o /opt/app/test/output.json

Which should pass:

	 >>> Test passed!

Take it to production

1
Send the statements to the REST API

Launch your statements into production by sending them to the REST API with the following command:

statements=$(< src/statements.sql) && \
    echo "{\"ksql\":\"'$statements'\", \"streamsProperties\": {}}" | \
        curl -X "POST" "http://localhost:8088/ksql" \
             -H "Content-Type: application/vnd.ksql.v1+json; charset=utf-8" \
             -d @- | \
        jq